Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 86(2): 13, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170298

RESUMO

Conditions for self-organisation via Turing's mechanism in biological systems represented by reaction-diffusion or reaction-cross-diffusion models have been extensively studied. Nonetheless, the impact of tissue stratification in such systems is under-explored, despite its ubiquity in the context of a thin epithelium overlying connective tissue, for instance the epidermis and underlying dermal mesenchyme of embryonic skin. In particular, each layer can be subject to extensively different biochemical reactions and transport processes, with chemotaxis - a special case of cross-diffusion - often present in the mesenchyme, contrasting the solely molecular transport typically found in the epidermal layer. We study Turing patterning conditions for a class of reaction-cross-diffusion systems in bilayered regions, with a thin upper layer and coupled by a linear transport law. In particular, the role of differential transport through the interface is explored together with the presence of asymmetry between the homogeneous equilibria of the two layers. A linear stability analysis is carried out around a spatially homogeneous equilibrium state in the asymptotic limit of weak and strong coupling strengths, where quantitative approximations of the bifurcation curve can be computed. Our theoretical findings, for an arbitrary number of reacting species, reveal quantitative Turing conditions, highlighting when the coupling mechanism between the layered regions can either trigger patterning or stabilize a spatially homogeneous equilibrium regardless of the independent patterning state of each layer. We support our theoretical results through direct numerical simulations, and provide an open source code to explore such systems further.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Difusão
2.
Bull Math Biol ; 86(2): 21, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253936

RESUMO

Symmetry-breaking instabilities play an important role in understanding the mechanisms underlying the diversity of patterns observed in nature, such as in Turing's reaction-diffusion theory, which connects cellular signalling and transport with the development of growth and form. Extensive literature focuses on the linear stability analysis of homogeneous equilibria in these systems, culminating in a set of conditions for transport-driven instabilities that are commonly presumed to initiate self-organisation. We demonstrate that a selection of simple, canonical transport models with only mild multistable non-linearities can satisfy the Turing instability conditions while also robustly exhibiting only transient patterns. Hence, a Turing-like instability is insufficient for the existence of a patterned state. While it is known that linear theory can fail to predict the formation of patterns, we demonstrate that such failures can appear robustly in systems with multiple stable homogeneous equilibria. Given that biological systems such as gene regulatory networks and spatially distributed ecosystems often exhibit a high degree of multistability and nonlinearity, this raises important questions of how to analyse prospective mechanisms for self-organisation.


Assuntos
Ecossistema , Conceitos Matemáticos , Modelos Biológicos , Difusão , Redes Reguladoras de Genes
3.
Bull Math Biol ; 85(11): 113, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823924

RESUMO

Computing has revolutionised the study of complex nonlinear systems, both by allowing us to solve previously intractable models and through the ability to visualise solutions in different ways. Using ubiquitous computing infrastructure, we provide a means to go one step further in using computers to understand complex models through instantaneous and interactive exploration. This ubiquitous infrastructure has enormous potential in education, outreach and research. Here, we present VisualPDE, an online, interactive solver for a broad class of 1D and 2D partial differential equation (PDE) systems. Abstract dynamical systems concepts such as symmetry-breaking instabilities, subcritical bifurcations and the role of initial data in multistable nonlinear models become much more intuitive when you can play with these models yourself, and immediately answer questions about how the system responds to changes in parameters, initial conditions, boundary conditions or even spatiotemporal forcing. Importantly, VisualPDE is freely available, open source and highly customisable. We give several examples in teaching, research and knowledge exchange, providing high-level discussions of how it may be employed in different settings. This includes designing web-based course materials structured around interactive simulations, or easily crafting specific simulations that can be shared with students or collaborators via a simple URL. We envisage VisualPDE becoming an invaluable resource for teaching and research in mathematical biology and beyond. We also hope that it inspires other efforts to make mathematics more interactive and accessible.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Humanos , Dinâmica não Linear , Matemática , Estudantes
4.
Nat Commun ; 14(1): 4687, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607943

RESUMO

Tooth classes are an innovation that has contributed to the evolutionary success of mammals. However, our understanding of the mechanisms by which tooth classes diversified remain limited. We use the evolutionary radiation of noctilionoid bats to show how the tooth developmental program evolved during the adaptation to new diet types. Combining morphological, developmental and mathematical modeling approaches, we demonstrate that tooth classes develop through independent developmental cascades that deviate from classical models. We show that the diversification of tooth number and size is driven by jaw growth rate modulation, explaining the rapid gain/loss of teeth in this clade. Finally, we mathematically model the successive appearance of tooth buds, supporting the hypothesis that growth acts as a key driver of the evolution of tooth number and size. Our work reveal how growth, by tinkering with reaction/diffusion processes, drives the diversification of tooth classes and other repeated structure during adaptive radiations.


Assuntos
Quirópteros , Animais , Mamíferos/genética , Aclimatação , Difusão
5.
Cell ; 186(5): 940-956.e20, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764291

RESUMO

Fingerprints are complex and individually unique patterns in the skin. Established prenatally, the molecular and cellular mechanisms that guide fingerprint ridge formation and their intricate arrangements are unknown. Here we show that fingerprint ridges are epithelial structures that undergo a truncated hair follicle developmental program and fail to recruit a mesenchymal condensate. Their spatial pattern is established by a Turing reaction-diffusion system, based on signaling between EDAR, WNT, and antagonistic BMP pathways. These signals resolve epithelial growth into bands of focalized proliferation under a precociously differentiated suprabasal layer. Ridge formation occurs as a set of waves spreading from variable initiation sites defined by the local signaling environments and anatomical intricacies of the digit, with the propagation and meeting of these waves determining the type of pattern that forms. Relying on a dynamic patterning system triggered at spatially distinct sites generates the characteristic types and unending variation of human fingerprint patterns.


Assuntos
Transdução de Sinais , Pele , Humanos , Pele/metabolismo
6.
Bull Math Biol ; 85(2): 14, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637542

RESUMO

Pattern formation has been extensively studied in the context of evolving (time-dependent) domains in recent years, with domain growth implicated in ameliorating problems of pattern robustness and selection, in addition to more realistic modelling in developmental biology. Most work to date has considered prescribed domains evolving as given functions of time, but not the scenario of concentration-dependent dynamics, which is also highly relevant in a developmental setting. Here, we study such concentration-dependent domain evolution for reaction-diffusion systems to elucidate fundamental aspects of these more complex models. We pose a general form of one-dimensional domain evolution and extend this to N-dimensional manifolds under mild constitutive assumptions in lieu of developing a full tissue-mechanical model. In the 1D case, we are able to extend linear stability analysis around homogeneous equilibria, though this is of limited utility in understanding complex pattern dynamics in fast growth regimes. We numerically demonstrate a variety of dynamical behaviours in 1D and 2D planar geometries, giving rise to several new phenomena, especially near regimes of critical bifurcation boundaries such as peak-splitting instabilities. For sufficiently fast growth and contraction, concentration-dependence can have an enormous impact on the nonlinear dynamics of the system both qualitatively and quantitatively. We highlight crucial differences between 1D evolution and higher-dimensional models, explaining obstructions for linear analysis and underscoring the importance of careful constitutive choices in defining domain evolution in higher dimensions. We raise important questions in the modelling and analysis of biological systems, in addition to numerous mathematical questions that appear tractable in the one-dimensional setting, but are vastly more difficult for higher-dimensional models.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Simulação por Computador , Dinâmica não Linear
7.
Bull Math Biol ; 84(9): 98, 2022 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-35934760

RESUMO

Time delays, modelling the process of intracellular gene expression, have been shown to have important impacts on the dynamics of pattern formation in reaction-diffusion systems. In particular, past work has shown that such time delays can shrink the Turing space, thereby inhibiting patterns from forming across large ranges of parameters. Such delays can also increase the time taken for pattern formation even when Turing instabilities occur. Here, we consider reaction-diffusion models incorporating fixed or distributed time delays, modelling the underlying stochastic nature of gene expression dynamics, and analyse these through a systematic linear instability analysis and numerical simulations for several sets of different reaction kinetics. We find that even complicated distribution kernels (skewed Gaussian probability density functions) have little impact on the reaction-diffusion dynamics compared to fixed delays with the same mean delay. We show that the location of the delay terms in the model can lead to changes in the size of the Turing space (increasing or decreasing) as the mean time delay, [Formula: see text], is increased. We show that the time to pattern formation from a perturbation of the homogeneous steady state scales linearly with [Formula: see text], and conjecture that this is a general impact of time delay on reaction-diffusion dynamics, independent of the form of the kinetics or location of the delayed terms. Finally, we show that while initial and boundary conditions can influence these dynamics, particularly the time-to-pattern, the effects of delay appear robust under variations of initial and boundary data. Overall, our results help clarify the role of gene expression time delays in reaction-diffusion patterning, and suggest clear directions for further work in studying more realistic models of pattern formation.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Difusão , Expressão Gênica , Cinética
8.
Philos Trans A Math Phys Eng Sci ; 379(2213): 20200268, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34743603

RESUMO

In the nearly seven decades since the publication of Alan Turing's work on morphogenesis, enormous progress has been made in understanding both the mathematical and biological aspects of his proposed reaction-diffusion theory. Some of these developments were nascent in Turing's paper, and others have been due to new insights from modern mathematical techniques, advances in numerical simulations and extensive biological experiments. Despite such progress, there are still important gaps between theory and experiment, with many examples of biological patterning where the underlying mechanisms are still unclear. Here, we review modern developments in the mathematical theory pioneered by Turing, showing how his approach has been generalized to a range of settings beyond the classical two-species reaction-diffusion framework, including evolving and complex manifolds, systems heterogeneous in space and time, and more general reaction-transport equations. While substantial progress has been made in understanding these more complicated models, there are many remaining challenges that we highlight throughout. We focus on the mathematical theory, and in particular linear stability analysis of 'trivial' base states. We emphasize important open questions in developing this theory further, and discuss obstacles in using these techniques to understand biological reality. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.


Assuntos
Modelos Biológicos , Difusão , Matemática , Morfogênese
9.
Philos Trans A Math Phys Eng Sci ; 379(2213): 20200280, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34743606

RESUMO

Elucidating pattern forming processes is an important problem in the physical, chemical and biological sciences. Turing's contribution, after being initially neglected, eventually catalysed a huge amount of work from mathematicians, physicists, chemists and biologists aimed towards understanding how steady spatial patterns can emerge from homogeneous chemical mixtures due to the reaction and diffusion of different chemical species. While this theory has been developed mathematically and investigated experimentally for over half a century, many questions still remain unresolved. This theme issue places Turing's theory of pattern formation in a modern context, discussing the current frontiers in foundational aspects of pattern formation in reaction-diffusion and related systems. It highlights ongoing work in chemical, synthetic and developmental settings which is helping to elucidate how important Turing's mechanism is for real morphogenesis, while highlighting gaps that remain in matching theory to reality. The theme issue also surveys a variety of recent mathematical research pushing the boundaries of Turing's original theory to more realistic and complicated settings, as well as discussing open theoretical challenges in the analysis of such models. It aims to consolidate current research frontiers and highlight some of the most promising future directions. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.


Assuntos
Modelos Biológicos , Difusão , Matemática , Morfogênese
10.
Bull Math Biol ; 83(7): 82, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34089093

RESUMO

Realistic examples of reaction-diffusion phenomena governing spatial and spatiotemporal pattern formation are rarely isolated systems, either chemically or thermodynamically. However, even formulations of 'open' reaction-diffusion systems often neglect the role of domain boundaries. Most idealizations of closed reaction-diffusion systems employ no-flux boundary conditions, and often patterns will form up to, or along, these boundaries. Motivated by boundaries of patterning fields related to the emergence of spatial form in embryonic development, we propose a set of mixed boundary conditions for a two-species reaction-diffusion system which forms inhomogeneous solutions away from the boundary of the domain for a variety of different reaction kinetics, with a prescribed uniform state near the boundary. We show that these boundary conditions can be derived from a larger heterogeneous field, indicating that these conditions can arise naturally if cell signalling or other properties of the medium vary in space. We explain the basic mechanisms behind this pattern localization and demonstrate that it can capture a large range of localized patterning in one, two, and three dimensions and that this framework can be applied to systems involving more than two species. Furthermore, the boundary conditions proposed lead to more symmetrical patterns on the interior of the domain and plausibly capture more realistic boundaries in developmental systems. Finally, we show that these isolated patterns are more robust to fluctuations in initial conditions and that they allow intriguing possibilities of pattern selection via geometry, distinct from known selection mechanisms.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Difusão , Desenvolvimento Embrionário , Cinética
11.
Bull Math Biol ; 83(5): 41, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740210

RESUMO

Reaction-diffusion systems are an intensively studied form of partial differential equation, frequently used to produce spatially heterogeneous patterned states from homogeneous symmetry breaking via the Turing instability. Although there are many prototypical "Turing systems" available, determining their parameters, functional forms, and general appropriateness for a given application is often difficult. Here, we consider the reverse problem. Namely, suppose we know the parameter region associated with the reaction kinetics in which patterning is required-we present a constructive framework for identifying systems that will exhibit the Turing instability within this region, whilst in addition often allowing selection of desired patterning features, such as spots, or stripes. In particular, we show how to build a system of two populations governed by polynomial morphogen kinetics such that the: patterning parameter domain (in any spatial dimension), morphogen phases (in any spatial dimension), and even type of resulting pattern (in up to two spatial dimensions) can all be determined. Finally, by employing spatial and temporal heterogeneity, we demonstrate that mixed mode patterns (spots, stripes, and complex prepatterns) are also possible, allowing one to build arbitrarily complicated patterning landscapes. Such a framework can be employed pedagogically, or in a variety of contemporary applications in designing synthetic chemical and biological patterning systems. We also discuss the implications that this freedom of design has on using reaction-diffusion systems in biological modelling and suggest that stronger constraints are needed when linking theory and experiment, as many simple patterns can be easily generated given freedom to choose reaction kinetics.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Cinética , Biologia de Sistemas/métodos
12.
J Math Biol ; 82(1-2): 4, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33475826

RESUMO

The study of pattern-forming instabilities in reaction-diffusion systems on growing or otherwise time-dependent domains arises in a variety of settings, including applications in developmental biology, spatial ecology, and experimental chemistry. Analyzing such instabilities is complicated, as there is a strong dependence of any spatially homogeneous base states on time, and the resulting structure of the linearized perturbations used to determine the onset of instability is inherently non-autonomous. We obtain general conditions for the onset and structure of diffusion driven instabilities in reaction-diffusion systems on domains which evolve in time, in terms of the time-evolution of the Laplace-Beltrami spectrum for the domain and functions which specify the domain evolution. Our results give sufficient conditions for diffusive instabilities phrased in terms of differential inequalities which are both versatile and straightforward to implement, despite the generality of the studied problem. These conditions generalize a large number of results known in the literature, such as the algebraic inequalities commonly used as a sufficient criterion for the Turing instability on static domains, and approximate asymptotic results valid for specific types of growth, or specific domains. We demonstrate our general Turing conditions on a variety of domains with different evolution laws, and in particular show how insight can be gained even when the domain changes rapidly in time, or when the homogeneous state is oscillatory, such as in the case of Turing-Hopf instabilities. Extensions to higher-order spatial systems are also included as a way of demonstrating the generality of the approach.


Assuntos
Ecologia , Difusão
13.
Bull Math Biol ; 82(10): 136, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057872

RESUMO

Reaction-diffusion processes across layered media arise in several scientific domains such as pattern-forming E. coli on agar substrates, epidermal-mesenchymal coupling in development, and symmetry-breaking in cell polarization. We develop a modeling framework for bilayer reaction-diffusion systems and relate it to a range of existing models. We derive conditions for diffusion-driven instability of a spatially homogeneous equilibrium analogous to the classical conditions for a Turing instability in the simplest nontrivial setting where one domain has a standard reaction-diffusion system, and the other permits only diffusion. Due to the transverse coupling between these two regions, standard techniques for computing eigenfunctions of the Laplacian cannot be applied, and so we propose an alternative method to compute the dispersion relation directly. We compare instability conditions with full numerical simulations to demonstrate impacts of the geometry and coupling parameters on patterning, and explore various experimentally relevant asymptotic regimes. In the regime where the first domain is suitably thin, we recover a simple modulation of the standard Turing conditions, and find that often the broad impact of the diffusion-only domain is to reduce the ability of the system to form patterns. We also demonstrate complex impacts of this coupling on pattern formation. For instance, we exhibit non-monotonicity of pattern-forming instabilities with respect to geometric and coupling parameters, and highlight an instability from a nontrivial interaction between kinetics in one domain and diffusion in the other. These results are valuable for informing design choices in applications such as synthetic engineering of Turing patterns, but also for understanding the role of stratified media in modulating pattern-forming processes in developmental biology and beyond.


Assuntos
Modelos Biológicos , Animais , Biologia do Desenvolvimento , Difusão , Escherichia coli , Humanos , Cinética , Conceitos Matemáticos
14.
Bull Math Biol ; 82(8): 113, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32780178

RESUMO

We study traveling waves in a non-local cross-diffusion-type model, where organisms move along gradients in population densities. Such models are valuable for understanding waves of migration and invasion and how directed motion can impact such scenarios. In this paper, we demonstrate the emergence of traveling wave solutions, studying properties of both planar and radial wave fronts in one- and two-species variants of the model. We compute exact traveling wave solutions in the purely diffusive case and then perturb these solutions to analytically capture the influence directed motion has on these exact solutions. Using linear stability analysis, we find that the minimum wavespeeds correspond to the purely diffusive case, but numerical simulations suggest that advection can in general increase or decrease the observed wavespeed substantially, which allows a single species to more rapidly move into unoccupied resource-rich spatial regions or modify the speed of an invasion for two populations. We also find interesting effects from the non-local interactions in the model, suggesting that single species invasions can be enhanced with stronger non-locality, but that invasion of a competitive species may be slowed due to this non-local effect. Finally, we simulate pattern formation behind waves of invasion, showing that directed motion can have substantial impacts not only on wavespeed but also on the existence and structure of emergent patterns, as predicted in the first part of our study (Taylor et al. in Bull Math Biol, 2020).


Assuntos
Modelos Biológicos , Dinâmica Populacional , Simulação por Computador , Difusão , Conceitos Matemáticos
15.
Bull Math Biol ; 82(8): 112, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32780350

RESUMO

We extend a spatially non-local cross-diffusion model of aggregation between multiple species with directed motion toward resource gradients to include many species and more general kinds of dispersal. We first consider diffusive instabilities, determining that for directed motion along fecundity gradients, the model permits the Turing instability leading to colony formation and persistence provided there are three or more interacting species. We also prove that such patterning is not possible in the model under the Turing mechanism for two species under directed motion along fecundity gradients, confirming earlier findings in the literature. However, when the directed motion is not along fecundity gradients, for instance, if foraging or migration is sub-optimal relative to fecundity gradients, we find that very different colony structures can emerge. This generalization also permits colony formation for two interacting species. In the advection-dominated case, aggregation patterns are more broad and global in nature, due to the inherent non-local nature of the advection which permits directed motion over greater distances, whereas in the diffusion-dominated case, more highly localized patterns and colonies develop, owing to the localized nature of random diffusion. We also consider the interplay between Turing patterning and spatial heterogeneity in resources. We find that for small spatial variations, there will be a combination of Turing patterns and patterning due to spatial forcing from the resources, whereas for large resource variations, spatial or spatiotemporal patterning can be modified greatly from what is predicted on homogeneous domains. For each of these emergent behaviors, we outline the theoretical mechanism leading to colony formation and then provide numerical simulations to illustrate the results. We also discuss implications this model has for studies of directed motion in different ecological settings.


Assuntos
Modelos Biológicos , Dinâmica Populacional , Simulação por Computador , Difusão , Conceitos Matemáticos
16.
Tissue Eng Part A ; 26(17-18): 1014-1023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32178595

RESUMO

In vitro bone formation by mesenchymal stromal cells encapsulated in type-1 collagen hydrogels is demonstrated after a 28-day in vitro culture period. Analysis of the hydrogels is carried out by X-ray microcomputed tomography, histology, and immunohistochemistry, which collectively demonstrates that bone formation in the hydrogels was quantifiably proportional to the initial collagen concentration, and subsequently the population density of seeded cells. This was established by varying the initial collagen concentration at a constant cell seeding density (3 × 105 cells/0.3 mL hydrogel), and separately varying cell seeding density at a constant collagen concentration (1 mg/mL). Using these data, a mathematical model is presented for the total hydrogel volume and mineralization volume based on the observed linear contraction dynamics of cell-seeded collagen gels. The model parameters are fitted by comparing the predictions of the mathematical model for the hydrogel and mineralized volumes on day 28 with the experimental data. The model is then used to predict the hydrogel and mineralization volumes for a range of hydrogel collagen concentrations and cell seeding densities, providing comprehensive input/output descriptors for generating mineralized hydrogels for bone tissue engineering. It is proposed that this quantitative approach will be a useful tool for generating in vitro manufactured bone tissue, defining input parameters that yield predictable output measures of tissue maturation. Impact statement This article describes a simple yet powerful quantitative description of in vitro tissue-engineered bone by combining experimental data with mathematical modeling. The overall aim of the article is to examine what is currently known about cell-mediated collagen contraction, and demonstrate that this phenomenon can be exploited to tailor bone formation by choosing a specific set of input parameters in the form of cell seeding density and collagen hydrogel concentration. Our study utilizes a clinically relevant cell source (human mesenchymal stem cells) with a biomaterial that has received regulatory approval for use in humans (collagen type 1), and hence could be useful for clinical applications, as well as furthering our understanding of cell/extracellular matrix interactions in determining in vitro bone tissue formation.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Engenharia Tecidual , Células Cultivadas , Humanos , Hidrogéis/farmacologia , Modelos Teóricos , Microtomografia por Raio-X
17.
Bull Math Biol ; 82(1): 15, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953602

RESUMO

Invasion of healthy tissue is a defining feature of malignant tumours. Traditionally, invasion is thought to be driven by cells that have acquired all the necessary traits to overcome the range of biological and physical defences employed by the body. However, in light of the ever-increasing evidence for geno- and phenotypic intra-tumour heterogeneity, an alternative hypothesis presents itself: could invasion be driven by a collection of cells with distinct traits that together facilitate the invasion process? In this paper, we use a mathematical model to assess the feasibility of this hypothesis in the context of acid-mediated invasion. We assume tumour expansion is obstructed by stroma which inhibits growth and extra-cellular matrix (ECM) which blocks cancer cell movement. Further, we assume that there are two types of cancer cells: (i) a glycolytic phenotype which produces acid that kills stromal cells and (ii) a matrix-degrading phenotype that locally remodels the ECM. We extend the Gatenby-Gawlinski reaction-diffusion model to derive a system of five coupled reaction-diffusion equations to describe the resulting invasion process. We characterise the spatially homogeneous steady states and carry out a simulation study in one spatial dimension to determine how the tumour develops as we vary the strength of competition between the two phenotypes. We find that overall tumour growth is most extensive when both cell types can stably coexist, since this allows the cells to locally mix and benefit most from the combination of traits. In contrast, when inter-species competition exceeds intra-species competition the populations spatially separate and invasion arrests either: (i) rapidly (matrix-degraders dominate) or (ii) slowly (acid-producers dominate). Overall, our work demonstrates that the spatial and ecological relationship between a heterogeneous population of tumour cells is a key factor in determining their ability to cooperate. Specifically, we predict that tumours in which different phenotypes coexist stably are more invasive than tumours in which phenotypes are spatially separated.


Assuntos
Modelos Biológicos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Ácidos/metabolismo , Movimento Celular/fisiologia , Simulação por Computador , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Glicólise , Humanos , Conceitos Matemáticos , Metaloproteinases da Matriz/metabolismo , Fenótipo , Células Estromais/patologia , Células Estromais/fisiologia , Microambiente Tumoral/fisiologia
18.
J R Soc Interface ; 17(162): 20190621, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31937231

RESUMO

Pattern formation from homogeneity is well studied, but less is known concerning symmetry-breaking instabilities in heterogeneous media. It is non-trivial to separate observed spatial patterning due to inherent spatial heterogeneity from emergent patterning due to nonlinear instability. We employ WKBJ asymptotics to investigate Turing instabilities for a spatially heterogeneous reaction-diffusion system, and derive conditions for instability which are local versions of the classical Turing conditions. We find that the structure of unstable modes differs substantially from the typical trigonometric functions seen in the spatially homogeneous setting. Modes of different growth rates are localized to different spatial regions. This localization helps explain common amplitude modulations observed in simulations of Turing systems in heterogeneous settings. We numerically demonstrate this theory, giving an illustrative example of the emergent instabilities and the striking complexity arising from spatially heterogeneous reaction-diffusion systems. Our results give insight both into systems driven by exogenous heterogeneity, as well as successive pattern forming processes, noting that most scenarios in biology do not involve symmetry breaking from homogeneity, but instead consist of sequential evolutions of heterogeneous states. The instability mechanism reported here precisely captures such evolution, and extends Turing's original thesis to a far wider and more realistic class of systems.


Assuntos
Modelos Biológicos , Difusão
19.
J Theor Biol ; 486: 110060, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31689420

RESUMO

Ecosystems often contain multiple species across two or more trophic levels, with a variety of interactions possible. In this paper we study two classes of models for generalist predators that utilize more than one food source. These models fall into two categories: predator - two prey and predator - prey - subsidy models. For the former, we consider a generalist predator which utilizes two distinct prey species, modelled via a Kolmogorov system of equations with Type II response functions. For the latter, we consider a generalist predator which exploits both a prey population and an allochthonous resource which is provided as a subsidy to the system exogenously, again with Type II response functions. This latter class of model is no longer Kolmogorov in form, due to an exogenous forcing term modelling the input of the allochthonous resource into the system. We non-dimensionalize both models, so that their respective parameter spaces may be more easily compared, and study the dynamics possible from each type of model, which will then indicate - for specific parameter regimes - which generalist predator's preferences are more favorable to survival, including the prevalence of coexistence states. We also consider the various non-equilibrium dynamics emergent from such models, and show that the non-Kolmogorov predator - prey - subsidy model of 10 admits more regular dynamics (including steady states and one type of limit cycle), whereas the predator - two prey Kolmogorov model can feature multiple types of limit cycles, as well as multistability resulting in strong sensitivity to initial conditions (with stable limit cycles and steady states both coexisting for the same model parameters). Our results highlight several interesting differences and similarities between Kolmogorov and non-Kolmogorov models for generalist predators.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Ecossistema , Modelos Biológicos , Dinâmica Populacional
20.
Math Med Biol ; 36(3): 325-360, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30107530

RESUMO

A contemporary procedure to grow artificial tissue is to seed cells onto a porous biomaterial scaffold and culture it within a perfusion bioreactor to facilitate the transport of nutrients to growing cells. Typical models of cell growth for tissue engineering applications make use of spatially homogeneous or spatially continuous equations to model cell growth, flow of culture medium, nutrient transport and their interactions. The network structure of the physical porous scaffold is often incorporated through parameters in these models, either phenomenologically or through techniques like mathematical homogenization. We derive a model on a square grid lattice to demonstrate the importance of explicitly modelling the network structure of the porous scaffold and compare results from this model with those from a modified continuum model from the literature. We capture two-way coupling between cell growth and fluid flow by allowing cells to block pores, and by allowing the shear stress of the fluid to affect cell growth and death. We explore a range of parameters for both models and demonstrate quantitative and qualitative differences between predictions from each of these approaches, including spatial pattern formation and local oscillations in cell density present only in the lattice model. These differences suggest that for some parameter regimes, corresponding to specific cell types and scaffold geometries, the lattice model gives qualitatively different model predictions than typical continuum models. Our results inform model selection for bioactive porous tissue scaffolds, aiding in the development of successful tissue engineering experiments and eventually clinically successful technologies.


Assuntos
Processos de Crescimento Celular , Modelos Teóricos , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...